ARCHITECTURAL CAST STONE

The APA Plant Certification Program addresses the differences between wet and dry cast production processes for Architectural Cast Stone. Dry Cast production is favored for its simplicity and its consistency in cases where the raw materials are the same or when more flexibility is required. Wet Cast production is favored for its consistency in cases where the raw materials are not the same or when more flexibility is required. Both methods produce high-quality architectural cast stone, but Wet Cast is favored for its consistency in cases where the raw materials are not the same or when more flexibility is required.

ARCHITECTURAL PRECAST & GLASS FIBER REINFORCED CONCRETE

Special aesthetic needs are satisfied with GFRC. Its light weight, durability, and aesthetic appeal make it ideal for precast applications that do not require the strength of architectural precast or cast stone. Special finishes include high durability concrete in various forms that can be applied to the surface of GFRC to achieve the aesthetic, functional, and utility required for a particular application.

GFRC • GLASS FIBER REINFORCED CONCRETE

The APA Plant Certification Program addresses the differences between wet and dry cast production processes for Architectural Cast Stone. Dry Cast production is favored for its simplicity and its consistency in cases where the raw materials are the same or when more flexibility is required. Wet Cast production is favored for its consistency in cases where the raw materials are not the same or when more flexibility is required. Both methods produce high-quality architectural cast stone, but Wet Cast is favored for its consistency in cases where the raw materials are not the same or when more flexibility is required.

ARCHITECTURAL CAST STONE

The APA Plant Certification Program addresses the differences between wet and dry cast production processes for Architectural Cast Stone. Dry Cast production is favored for its simplicity and its consistency in cases where the raw materials are the same or when more flexibility is required. Wet Cast production is favored for its consistency in cases where the raw materials are not the same or when more flexibility is required. Both methods produce high-quality architectural cast stone, but Wet Cast is favored for its consistency in cases where the raw materials are not the same or when more flexibility is required.
ARCHITECTURAL PRECAST

ARCHITECTURAL PRECAST
SPECIFY QUALITY

Specify An APA Certified Plant

ARCHITECTURAL PRECAST

Regional Quality Based Inspections DO ISSUE YOUR PROJECT COSTS

Architectural Precast Concretes has grown in popularity as a building product because of its fire resistance, flexibility, liability, and aesthetic appeal. While immense strides, a highly specialized industry has developed which requires an equally specialized system of quality control procedures.

The most recent of Architectural Precast Concretes is its dedicated role in the designer’s understanding of the product, but also its ability to produce products which meet his exact design of the project. To fulfill this, the Architectural Precast Association created a Plant Certification Program which provides design engineers with an essential measure of a manufacturer’s ability to produce quality precast concrete products. By concentrating on Architectural Precast Concretes as its single inspection party, APA can offer a level of quality assurance which only specification permits.

STRINGENT REQUIREMENTS FOR PLANT INSPECTIONS

Only the most qualified inspectors are chosen to provide a specifier the quality assurance he demands; an inspector must be approved by inspectors who have the knowledge to properly evaluate quality control procedures. This is why APA inspectors must be an experienced Registered Professional Engineer with deep knowledge of Precast Concretes and its quality control requirements. Ten years experience in the Precast Concrete Industry is the minimum APA will accept. Individual inspector credentials are verified by APA before any inspection begins.

MANUAL IS MANDATORY

Certified Quality Control Manual is mandatory by appropriate testing according to standard methods and standards.

Quality control components are thoroughly inspected and individually graded parallel. CERTIFIED QUALITY CONTROL MANUAL

APA requires quality certified professional to be on site.

Master Quality Control Managers are expected to Level I Quality Control Technicians. The APA is the only organization that requires a Certified Batch Plant Operator as well.

The team of QP professionals responsible for implementing the total quality control system consists of those involved in the manufacturing process.

This is why APA inspectors are dispersed throughout the entire country; therefore, travel and certification status is reinstated.

Specifying a plant

Precast Concretes are key to ensuring that the final result is aesthetically correct in color and finish through the project.

Changes involving blockouts, reveals, cast-in-reinforcement, and prior to concrete placement. Precast Concrete samples are key to ensuring and prior to concrete placement.

Concrete samples are checked for color consistency throughout the project.

The consistency of materials used in the final product severely

Testing is the primary method of determining conformance to design and specific

Each zone reflects a critical area of personnel, record keeping, and shop drawings. A plant which falls below the standards set by the APA must be prepared for an inspection at all times.

APA inspectors are dispersed throughout all regions of the country, therefore, travel and certification status is reinstated.

Precast Concrete samples are key to ensuring and prior to concrete placement.

Precast Concrete samples are key to ensuring and prior to concrete placement.

Precast Concrete samples are key to ensuring and prior to concrete placement.

Precast Concrete samples are key to ensuring and prior to concrete placement.

Precast Concrete samples are key to ensuring and prior to concrete placement.

Precast Concrete samples are key to ensuring and prior to concrete placement.

Precast Concrete samples are key to ensuring and prior to concrete placement.

Precast Concrete samples are key to ensuring and prior to concrete placement.

Precast Concrete samples are key to ensuring and prior to concrete placement.

Precast Concrete samples are key to ensuring and prior to concrete placement.

Precast Concrete samples are key to ensuring and prior to concrete placement.

Precast Concrete samples are key to ensuring and prior to concrete placement.

Precast Concrete samples are key to ensuring and prior to concrete placement.

Precast Concrete samples are key to ensuring and prior to concrete placement.

Precast Concrete samples are key to ensuring and prior to concrete placement.

Precast Concrete samples are key to ensuring and prior to concrete placement.

Precast Concrete samples are key to ensuring and prior to concrete placement.

Precast Concrete samples are key to ensuring and prior to concrete placement.

Precast Concrete samples are key to ensuring and prior to concrete placement.

Precast Concrete samples are key to ensuring and prior to concrete placement.

Precast Concrete samples are key to ensuring and prior to concrete placement.

Precast Concrete samples are key to ensuring and prior to concrete placement.

Precast Concrete samples are key to ensuring and prior to concrete placement.

Precast Concrete samples are key to ensuring and prior to concrete placement.

Precast Concrete samples are key to ensuring and prior to concrete placement.

Precast Concrete samples are key to ensuring and prior to concrete placement.

Precast Concrete samples are key to ensuring and prior to concrete placement.

Precast Concrete samples are key to ensuring and prior to concrete placement.

Precast Concrete samples are key to ensuring and prior to concrete placement.

Precast Concrete samples are key to ensuring and prior to concrete placement.

Precast Concrete samples are key to ensuring and prior to concrete placement.

Precast Concrete samples are key to ensuring and prior to concrete placement.

Precast Concrete samples are key to ensuring and prior to concrete placement.

Precast Concrete samples are key to ensuring and prior to concrete placement.

Precast Concrete samples are key to ensuring and prior to concrete placement.

Precast Concrete samples are key to ensuring and prior to concrete placement.

Precast Concrete samples are key to ensuring and prior to concrete placement.

Precast Concrete samples are key to ensuring and prior to concrete placement.

Precast Concrete samples are key to ensuring and prior to concrete placement.

Precast Concrete samples are key to ensuring and prior to concrete placement.

Precast Concrete samples are key to ensuring and prior to concrete placement.

Precast Concrete samples are key to ensuring and prior to concrete placement.

Precast Concrete samples are key to ensuring and prior to concrete placement.

Precast Concrete samples are key to ensuring and prior to concrete placement.
Regional Inspectors

Appointed by the Certification Manager, Regional Inspectors are responsible for the day-to-day operations of the program. They are knowledgeable of all aspects of the quality control components of the program and are required to maintain accurate, detailed project records. They are expected to concentrate on the critical areas of personnel, record keeping, and shop drawings. The Regional Inspectors are responsible for inspecting the Certified Plant immediately after the Certification Manager has completed his/her inspection. The Regional Inspectors are also responsible for the enforcement of the QC Manual and are required to submit any evidence of non-compliance to the Certification Manager.

The Regional Inspectors are responsible for:

- Performing QC Manual audits on all certified plants.
- Performing quality control reviews on all projects.
- Submitting any evidence of non-compliance to the Certification Manager.
- Maintaining accurate, detailed project records.
- Verifying that all QC Manual procedures are being followed.
- Inspecting all Certified Plants immediately after the Certification Manager has completed his/her inspection.
- Reporting any non-compliance to the Certification Manager.
- Ensuring that all Certification Manager requirements are being met.
- Performing all other tasks as required by the Certification Manager.

The Certification Manager is responsible for:

- Establishing and maintaining the quality control components of the program.
- Ensuring that all QA/QC procedures are being followed.
- Submitting any evidence of non-compliance to the Certification Manager.
- Verifying that all QC Manual procedures are being followed.
- Inspecting all Certified Plants immediately after the Certification Manager has completed his/her inspection.
- Reporting any non-compliance to the Certification Manager.
- Ensuring that all Certification Manager requirements are being met.
- Performing all other tasks as required by the Certification Manager.

The Certification Manager is responsible for:

- Establishing and maintaining the quality control components of the program.
- Ensuring that all QA/QC procedures are being followed.
- Submitting any evidence of non-compliance to the Certification Manager.
- Verifying that all QC Manual procedures are being followed.
- Inspecting all Certified Plants immediately after the Certification Manager has completed his/her inspection.
- Reporting any non-compliance to the Certification Manager.
- Ensuring that all Certification Manager requirements are being met.
- Performing all other tasks as required by the Certification Manager.

The Certification Manager is responsible for:

- Establishing and maintaining the quality control components of the program.
- Ensuring that all QA/QC procedures are being followed.
- Submitting any evidence of non-compliance to the Certification Manager.
- Verifying that all QC Manual procedures are being followed.
- Inspecting all Certified Plants immediately after the Certification Manager has completed his/her inspection.
- Reporting any non-compliance to the Certification Manager.
- Ensuring that all Certification Manager requirements are being met.
- Performing all other tasks as required by the Certification Manager.

The Certification Manager is responsible for:

- Establishing and maintaining the quality control components of the program.
- Ensuring that all QA/QC procedures are being followed.
- Submitting any evidence of non-compliance to the Certification Manager.
- Verifying that all QC Manual procedures are being followed.
- Inspecting all Certified Plants immediately after the Certification Manager has completed his/her inspection.
- Reporting any non-compliance to the Certification Manager.
- Ensuring that all Certification Manager requirements are being met.
- Performing all other tasks as required by the Certification Manager.

The Certification Manager is responsible for:

- Establishing and maintaining the quality control components of the program.
- Ensuring that all QA/QC procedures are being followed.
- Submitting any evidence of non-compliance to the Certification Manager.
- Verifying that all QC Manual procedures are being followed.
- Inspecting all Certified Plants immediately after the Certification Manager has completed his/her inspection.
- Reporting any non-compliance to the Certification Manager.
- Ensuring that all Certification Manager requirements are being met.
- Performing all other tasks as required by the Certification Manager.

The Certification Manager is responsible for:

- Establishing and maintaining the quality control components of the program.
- Ensuring that all QA/QC procedures are being followed.
- Submitting any evidence of non-compliance to the Certification Manager.
- Verifying that all QC Manual procedures are being followed.
- Inspecting all Certified Plants immediately after the Certification Manager has completed his/her inspection.
- Reporting any non-compliance to the Certification Manager.
- Ensuring that all Certification Manager requirements are being met.
- Performing all other tasks as required by the Certification Manager.

The Certification Manager is responsible for:

- Establishing and maintaining the quality control components of the program.
- Ensuring that all QA/QC procedures are being followed.
- Submitting any evidence of non-compliance to the Certification Manager.
- Verifying that all QC Manual procedures are being followed.
- Inspecting all Certified Plants immediately after the Certification Manager has completed his/her inspection.
- Reporting any non-compliance to the Certification Manager.
- Ensuring that all Certification Manager requirements are being met.
- Performing all other tasks as required by the Certification Manager.

The Certification Manager is responsible for:

- Establishing and maintaining the quality control components of the program.
- Ensuring that all QA/QC procedures are being followed.
- Submitting any evidence of non-compliance to the Certification Manager.
- Verifying that all QC Manual procedures are being followed.
- Inspecting all Certified Plants immediately after the Certification Manager has completed his/her inspection.
- Reporting any non-compliance to the Certification Manager.
- Ensuring that all Certification Manager requirements are being met.
- Performing all other tasks as required by the Certification Manager.
ARCHITECTURAL CAST STONE

The APA Plant Certification Program addresses the differences between wet and dry cast production processes for Architectural Cast Stone. Dry Cast products are formed from a dry mix-concrete mix that requires the use of pneumatic conveyors to convey the concrete into molds. Wet Cast products use a reusable slump control system that is poured into molds and properly consolidated. Both methods produce high-quality architectural cement-building units that simulate natural stone and are typically treated with handsome recovery units during installation.

Architectural Cast Stone units are generally best used for decorative design purposes where the architect requires a finer finish to the present concrete treatment. The APA certification process does not replace the criteria for finish, durability, and quality control that must be special requirements of this product.

GFRC • GLASS FIBER REINFORCED CONCRETE

Special aesthetic needs are satisfied with GFRC. Its light weight, durable character makes it ideal for accent applications that do not require the strength of architectural panels or cast stone. Special fiberglass-reinforced high-strength concrete is wetted on or formed then hard compacted to achieve the proper thickness and consolidation. These special casting procedures require unique quality control considerations that we refer to our manufacturers for further discussion.
ARCHITECTURAL CAST STONE

The APA Plant Certification Program addresses the differences between wet and dry cast production processes for Architectural Cast Stone. Dry Cast products are formed from dry clamp concrete mix that require the use of pneumatic tampers to compact the concrete into molds. Wet Cast products use a reusable clamp concrete mix that is poured into molds and properly consolidated. Both methods produce high-quality architectural concrete units, with their distinct wet and dry production processes, being typically utilized in broadest recovery units during installation. Architectural Cast Stone units are generally used for occasional design purposes where the architect requires a finer detail in the present concrete treatment. The APA certification process expands its criteria for finish, durability, and quality control to meet the special requirements of this product.

GFRC • GLASS FIBER REINFORCED CONCRETE

Special aesthetic needs are satisfied with GFRC. In light weight, double-class resistance is ideal for precast applications that do not require the strength of architectural or cast stone. Special fiberglass-reinforced high-strength concrete is poured on site to form the final component to achieve the proper thickness and classification. These special casting procedures require unique quality control considerations that we at APA ensure our operations do not exceed. The APA Plant Certification Program assists with additional GFRC quality control procedures are followed by your manufacturer.